

General Certificate of Education

Mathematics 6360

MM04 Mechanics 4

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

www.mymainscloud.com

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
E	mark is for explanation						
√or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only RA required accuracy						
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

AQA GCE Mark Scheme, 2006 June series - Mark Schoud Com

MM04

Q	Solution	Marks	Total	Comments
1(a)	i j k			
	2			
	3 –5 <i>a</i>	M1		\sum forces = 0
	b +5 -2	1711		Z forces = 0
	$\frac{b}{0} + \frac{5}{0} - \frac{2}{0}$			
	$\Rightarrow b = -5, \ a = 2$	A1	2	Both correct
(b)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 2 & 0 & 0 \end{vmatrix} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 1 \\ -5 & 5 & -2 \end{vmatrix}$	M1		Intention to find $\mathbf{r} \times \mathbf{F}$ [or $\mathbf{F} \times \mathbf{r}$]
	1 1 0 + -1 2 1			
	2 0 0 -5 5 -2	A1		Two correct non zero determinants
	$= -2\mathbf{k} - 9\mathbf{i} - 7\mathbf{j} + 5\mathbf{k}$	A1		attempted At least two non zero terms correct
	$= -9\mathbf{i} - 7\mathbf{j} + 3\mathbf{k}$	A1	4	Fully simplified. Lose 1 if $\mathbf{F} \times \mathbf{r}$ found
	Total	Al	6	runy simplified. Lose i ii i x i iound
2(a)(i)		M1		Adding forces
	$ \binom{8+6+-2+0}{4+5-2-2} = \binom{12}{5} $	A1		$R_x = 12 R_y = 5$
		711		,
	$ F = \sqrt{12^2 + 5^2} = 13$	A1√	3	Follow through mis totals was of
	- -	A1√	3	Follow through mis-totals – use of Pythagoras' rule
				1 y magerial 1 mil
(ii)	Moment of forces about O			_
	=-6(3)-2(3)-2(4)+2(4)	M1 A1		One term correct All terms correct
	10 6 0 0	Al		[NB ± can be reversed]
	=-18-6-8+8 = -24			[ND _ can be reversed]
	-12d = -24	M1		Equation formed $R_x d$ = Total moment
	∴ <i>d</i> = 2	A1	4	Printed answer
	Alternative			
	Total Moment = -24	(M1)		
	Equation of line of action in	(A1)		
	Equation of line of action is			
	$y = \frac{5}{12} \left(x + \frac{24}{5} \right)$	(M1)		
	When $x = 0$, $y = 2$	(A1)		
(b)		D1 A		
(b)	c = 24	B1√		Follow through (a)(ii)
				ie their total moment
		B1√	2	Accept 'clockwise'
			_	Follow through their direction from (a)(ii)
	0.			
	Total		9	

www.mymathscloud.com

MM04 (cont	.)			
Q	Solution	Marks	Total	Comments
3(a)	Take moments at A for system			
	P(l) = 100(2l)	M1		Moments for system
	$\Rightarrow P = 200 \mathrm{N}$	A1	2	,
		711	2	
(b)(i)	For whole system to be in equilibrium;			
()()	X = 200 left $Y = 100 up$	M1		Balances system and uses Pythagoras'
	•	1411		rule
	∴ magnitude = $100\sqrt{5}$ N	A1	2	Accept 224, $\sqrt{50000}$
	That is a second of the second	711	2	, vecos
ı	. (100)			
(ii)	Angle = $\tan^{-1} \left(\frac{100}{200} \right) = 27^{\circ}$	B1	1	Condone unrounded answers
	(200)			
	↑100			
(c)	200 T ₄₈ T ₄₈ -			
	$\leftarrow A \rightarrow \leftarrow B$			
	TAE			
	TAE			
	$E \xrightarrow{200} E \xrightarrow{T_{SE}} D \xrightarrow{C}$			
	By considering forces at A			
	,	D.1		
	$T_{AB} = 200$	B1		
	$T_{AE} = 100$	B1		
	By considering forces at E			
	Vertically, $T_{AE} + T_{BE} \cos 45^{\circ} = 0$	M1		Form equation
	$T_{BE} = 100\sqrt{2}$	A 1		A 1.41
		A1		Accept 141
	AB in tension, AE in tension, BE in			
	compression	B1	5	All correct
	Total		10	

AQA GCE Mark Scheme, 2006 June series - Mark Schoud Conn

Q	Solution	Marks	Total	Comments
4(a)	N N			
	F	B1		Three forces Alternative: N/F combined
	$\overline{\hspace{1cm}}_{W}$	B1	2	Through one point
(b)	About to topple $\Rightarrow \tan \alpha = \frac{d}{3d}$	M1		Use of $\tan \alpha$
	.(1)	A1		$\frac{d}{3d}$ used or $\frac{3d}{d}$
	$\therefore \alpha = \tan^{-1} \left(\frac{1}{3} \right)$ $= 18.4^{\circ}$	A1	3	Accept 18°
	-10.1	Ai	3	Ассері 18
(c)	Parallel to plane $W \sin \alpha = F$ Perpendicular to plane	M1		Attempt to resolve parallel or perpendicular to the plane
	W $\cos \alpha = N$ Law of friction $F \le \mu N$	A1		Both correct
	$\mu = \frac{2}{9} : W \sin \alpha \le \frac{2}{9} W \cos \alpha$	M1		Law of friction used
	$\tan \alpha \le \frac{2}{9}$	A1		$\tan \alpha$ or α obtained or inequality stated
	$\frac{2}{9} < \frac{1}{3} \text{ or } 13^{\circ} < 18^{\circ}$			
	Slide first	A1	5	Comparison and conclusion – correct answer only [N.B. Accept (b) and (c) in any order]
	Total		10	[

www.mymathscloud.com

Q Q	Solution	Marks	Total	Comments
5(a)	For cylinder, $C = I\ddot{\theta}$	Maiks	1 Otal	Comments
3(a)	For cylinder, $C = I\theta$ $\Rightarrow Tr = 4mr^2 \ddot{\theta}$	M1A1		Use of $C = I \ddot{\theta}$
		1411111		Use 01 C = 10
	$\therefore T = 4mr\theta$ For particle $2mg - T = 2mr\ddot{\theta}$ 2	M1		Attampt to use E = ms
	For particle $2mg - 1 = 2mro$	A1A1		Attempt to use $F = ma$ A1 RHS A1 LHS
	$1+2 \ 2mg = 6mr\ddot{\theta}$	11111		AI KIIS AI LIIS
	$\ddot{\theta} = \frac{g}{3r}$	A1	6	Printed answer
	Alternative:			
	KE of cylinder = $\frac{1}{2}I\dot{\theta}^2$			
	$=\frac{1}{2}\left(4mr^2\right)\dot{\theta}^2$			
	$=2mr^2\dot{\theta}^2$	(M1)		Attempt at one energy term
	KE of particle = $\frac{1}{2}mv^2$			
	$=\frac{1}{2}(2m)(r\dot{\theta})^2$			
	$=mr^2\dot{\theta}^2$			
	PE of particle = mgh			
	$=2mgr\theta$	(A2,1,0)		Energy terms correct
	Conservation of energy			
	$2mr^2\dot{\theta}^2 + mr^2\dot{\theta}^2 = 2mgr\theta$			_
	$3r\dot{\theta}^2 = 2g\theta$	(M1)		Form equation
	Differentiating $6r\dot{\theta}\ddot{\theta} = 2g\dot{\theta}$	(A1)		Correct differentiation
	\Rightarrow $6r\ddot{\theta} = 2g$			
	$\ddot{\theta} = \frac{g}{3r}$	(A1)		Printed answer
(b)	$T = 4mr\left(\frac{g}{3r}\right)$ $4mg$			
	$=\frac{4mg}{3}$	B1	1	Substitute - must cancel <i>r</i>
	Total		7	

www.mymathscloud.com MM04 (cont) **Solution** Marks **Total Comments** 6(a)(i)Use of I = $\frac{\int xy dx}{\int y dx}$ $[\rho = 1 \text{ allowed throughout}]$ M1 Stated or used $\int y \, dx = \text{semi circle area} = \frac{1}{2}\pi r^2$ **A**1 Use of diagram/by symmetry, $\bar{x} = 2I$ Explains need for 2 × Integral **A**1 $\frac{1}{2}\pi r^2 \overline{x} = \int_{1}^{r} 2x \sqrt{r^2 - x^2} \, \mathrm{d}x$ Use of $y = \sqrt{r^2 - x^2}$ and rearrangement **A**1 **Alternative** Mass of elemental strip = $2v \delta x \rho$ [Allow $\rho = 1$ throughout] Moment of elemental strip = $2y \delta x \rho x$ (M1)Elemental strip identified Total moment = $\rho \int 2xy \, dx$ Integral formed (A1) Use of $\sum (mx) = (\sum m)\overline{x}$ Gives $\rho \int_{0}^{r} 2xy \, dy = \frac{1}{2} \rho \pi r^2 \overline{x}$ Equation formed (M1) $\Rightarrow \int_{0}^{r} 2x \sqrt{r^2 - x^2} \, \mathrm{d}x = \frac{1}{2} \pi r^2 \overline{x}$ Use of $\sqrt{r^2 - x^2} = y$ and $\frac{1}{2}\pi r^2$ (A1)(ii) $\int_{0}^{r} 2x\sqrt{r^{2}-x^{2}} dx = \left[-\frac{2}{3}(r^{2}-x^{2})^{\frac{3}{2}}\right]_{0}^{r}$ M1 Attempt to integrate - inspection or substitution Integrated correctly and limits substituted A1 - condone sign error $= \left(0\right) - \left(-\frac{2}{3}r^3\right)$ $= \frac{2}{3}r^3$ $\therefore \frac{1}{2}\pi r^2 \overline{x} = \frac{2}{3}r^3$ (b)(i) $\overline{x} = \frac{4r}{3\pi}$ $\frac{2}{3}(1.2) = 0.8 \text{ m}$ Printed answer A1 3 **B**1 1 (ii) $1.2 + \frac{4(0.5)}{3\pi} = 1.41 \text{ m}$

B1

1

www.ms.mathscloud.com

MM04 (cont	ŕ			
Q	Solution	Marks	Total	Comments
6(b)(iii) (c)	Using $(\sum m)\overline{x} = \sum (mx)$ $\left[\frac{1}{2}(1)(1.2)\right][0.8] + \left[\frac{1}{2}\pi(0.5)^2\right][1.41]$ $= \left[\frac{1}{2}(1)(1.2) + \frac{1}{2}\pi(0.5)^2\right]\overline{x}$ $0.48 + 0.553 = 0.992\overline{x}$ $\therefore \overline{x} = 1.04 \text{ m}$	M1 A1√ A1√ A1	4	Form equation – Follow through (b)(i) One term correct All terms correct CAO
	$\tan \theta = \frac{(1.2 - 1.04)}{0.5} = 0.32$	M1 A1		$\tan \theta \text{ seen}$ Ratio correct structure = $\frac{1.2 - \overline{x}}{0.5}$
	$\theta = 18^{\circ}$	A1√	3	ft ratio error – correct use of tan ⁻¹ (ratio)
	Total		16	

				GCE Mark Scheme, 2006 June series
(cont)				GCE Mark Scheme, 2006 June series - The The Its Colo
2	Solution	Marks	Total	Comments
7(a)	Rod BC has mass m Length $2l$			
	$I_G = \frac{1}{3}ml^2$	B1		
	(G is c of m for rod)			
	$AG = l\sqrt{5}$	B1		Or $AG^2 = 5l^2$
	$I_{BC} = \frac{1}{3}ml^2 + m\left(l\sqrt{5}\right)^2$	M1		Use of parallel axis theorem
	$=\frac{16ml^2}{3}$	A1	4	
(b)	$I_{AD} = I_{AB} = \frac{4}{3} m l^2$	B1		Standard result
	$I_{DC} = I_{BC} = \frac{16ml^2}{3}$	B1		Use of part (a)
	$I_{SYSTEM} = \frac{4}{3}ml^2 + \frac{4}{3}ml^2 + \frac{16ml^2}{3} + \frac{16ml^3}{3}$			
	3 3 3	M1		4 rods or 3 particles considered
	$+3m(2l)^{2} + 2m(8l^{2}) + m(2l)^{2}$	A2,1,0		-1 each type of error
	$=\frac{136ml^2}{3}$	A1	6	Printed answer
(c)	Gain in KE = $\frac{1}{2}I\dot{\theta}^2$			
	$=\frac{1}{2}\left(\frac{136}{3}\right)ml^2\dot{\theta}^2$	B1		Use of $\frac{1}{2}I\dot{\theta}^2 \left[\text{ or } \frac{1}{2}I\omega^2 \right]$
	Loss in PE for framework (using c. of	M1		Use of mgh seen
	mass) = 4mg(2l)	A1		Correct loss of PE for framework only
	For particles PE lost $= 2mg(4l) + 3mg(4l)$	M1		\sum Loss of PE for particles
	Total loss in PE = $28mgl$	A1		Correct total loss for particles
	$\frac{68}{3}ml^2\dot{\theta}^2 = 28mgl$			_
	_	M1		Use of conservation of energy
	$\therefore \dot{\theta}^2 = \frac{3 \times 28 \text{mg/}}{68 \text{ml}^2} = \frac{21g}{17l}$	A 1√	7	Their equation correctly rearranged for $\dot{\theta}^2$ or $\dot{\theta}$
	$\therefore \dot{\theta} = \sqrt{\frac{21g}{17l}}$			Follow through one error

www.mymathscloud.com

IVIU4 (CON					
Q	Solution		Marks	Total	Comments
7(c)	Alternative				
	Gain in KE = $\frac{1}{2} \left(\frac{136}{3} \right) ml^2 \dot{\theta}^2$		(B1)		
	c. of mass for system				
	$2ml + 6m(2l) = 14m\overline{y}$		(M1)		Or by symmetry
	$\overline{y} = l$		(A1)		
	Loss in PE of system = mgh		(M1)		Use of <i>mgh</i>
	=14mg(2l)=28mgl		(A1√)		Follow through centre of mass error
	$C \text{ of E } \frac{68}{3}ml^2\dot{\theta}^2 = 28mgl$		(M1)		
	$\dot{\theta}^2 = \frac{21g}{17l} \qquad \dot{\theta} = \sqrt{\frac{21g}{17l}}$		(A1√)		Follow through one error
		Total		17	
	Т	OTAL		75	